

Distribution Planning Advisory Group

Attachment K Study Development Meeting

DPAG 1 – March 2025

John Gross, P.E. Manager, System Planning

Agenda & Meeting Etiquette

Agenda

- Introductions and Logistics
- Study Development Meeting (Attachment K)
- Transmission Planning Assumptions & Criteria
- Distribution Planning Assumptions & Criteria
- Future Meeting Topics
- Questions & Discussions

Meeting Etiquette

- Meetings will be recorded & posted
- Mute speakers & cameras optional
- Questions in the chat or use the "raise hand" feature
- Respect diverse opinions

DPAG/Attachment K

DPAG

- Provide transparency to planning process
- Inform long-term plan

System Assessment

- Identify performance issues
- Propose mitigation alternatives

Attachment K

- Transmission planning process
- FERC required process

Study Development

Avista's Open Access Transmission Tariff – Attachment K

April Spacek | System Planning Engineer

Study Development

Transmission Planning Process – Attachment K

- Local Planning – Avista - Part 3
- Regional Planning – NorthernGrid – Part 4
- Interconnection
 Wide Planning –
 WECC Part 5

		Year 1	Year 2	Year 3	Year 4	Year 1
			Long-Term Tra	nsmission Plan		Long-Term
Interconne Pl	ction Wide an	Interconnection Wide Plan		Interconne Pla	Interconnec Pla	
Regional Ti Pl	ansmission an	Regional Ti Pl	ransmission an	Regional Tr Pla	ansmission an	Regional Tra Pla
Local Plan	Local	Plan	Loca	l Plan	Loca	l Plan
2026	2027	2028	2029	2030	2031	2032

Local Transmission Plan Cycle

System Planning Assessment Timeline

Avista's Planning Cycle

Long Term Regional Planning (FERC 1920)

Enhanced Reliability Upgrades

Transmission customers can request upgrades not identified through technical studies.

Avista's 230 kV (left) and BPA's 230 kV line across the Rathdrum Prairie, ID

Transmission Planning

Assumptions, Criteria and Analyses

Cole Youngers | Sr. System Planning Engineer

Initial Assumptions

Study Scenarios

Scenario	Description (likelihood or "return time")	1 Year (2026)	5 Year (2030)	10 Year (2035)	TPL
Heavy Summer	Loads 1 in 10*, Generation per Generation Dispatch**	х	х	х	R2.1.1. R2.2.1. R2.4.1. and R2.5
Light Summer	Loads 1 in 2*, Generation per Generation Dispatch**	х			R2.1.3
Heavy Winter	Loads 1 in 10*, Generation per Generation Dispatch**		х		R2.1.3, R2.4.3
Light Spring	Loads 1 in 2*, Generation per Generation Dispatch**		х		R2.1.2 and R2.4.2
High E-W Transfer	Sensitivity to light load, high generation, and high system transfers		Х		R2.1.3 and R2.4.3 sensitivity for R2.1.2 and R2.4.2

Inputs to the Combined Load Forecast

Point-to-Point Customer Data

Impacts from Point-to-Point Service

- Transmission impacts
- Generation impacts

Include Firm Transmission Service for Existing Customers

Evaluate transmission forecasts to serve existing customers on the planning horizon

Long-Term TSRs Addressed Independently from the System Assessment

Winter BA Load Forecast

Year

Summer BA Load Forecast

Resource Assumptions

Existing Resources

 Dispatched seasonally based on historical trends

Future Resources

- Signed interconnection agreements in study horizon
- Dispatched seasonally
- Includes identified transmission upgrades

Avista's Nine Mile Dam, Spokane, WA

Generation Interconnections

		MW				
Queue #	COD	Output	Туре	County	State	POI
59	9/1/2027(Susp)	60	Solar/Storage	Adams	WA	Roxboro 115kV Station
60	9/1/2025(Susp)	150	Solar/Storage	Asotin	WA	Dry Creek 230kV Station
97	12/31/2025(Susp)	100	Solar/Storage	Nez Pierce	ID	Lolo 230kV Station
TCS-03	9/1/2025 (Susp)	80	Solar/Storage	Adams	WA	Warden 115kV Station
TCS-14	9/1/2026	375	Wind/Storage	Garfield	WA	Dry Creek 230kV Station
CS23-06	9/26/2028	220.5	Wind	Whitman	WA	AVAHub23-05 230kV
CS23-12	7/9/2029	199	Storage	Franklin	WA	AVAHub23-04 230kV
CS23-13	6/30/2028	40	Solar	Lincoln	WA	Davenport 115kV
						Airway Heights – Silver
CS23-14	6/30/2028	40	Solar	Spokane	WA	Lake 115kV

Planning for more than 1,264 MWs of non-Avista owned generation by 2028

Planned Transmission Upgrades

Planned Projects

- Approved and budgeted
- Scheduled in service within study horizon

					Inclu	ded in l	Model
ERT #	Project Name	Driver	Scope	Status	1- year	5- year	10- year
131	Garden Springs Station	Performance & Capacity	Construct <u>new</u> 115kV portion of Garden Springs Station at the existing Garden Springs switching location. New station will terminate Airway Heights – Sunset and Sunset – Westside 115kV transmission lines including the South Fairchild Tap. Construct new 230kV portion of Garden Springs Station including two 250MVA nominal 230/115kV transformers. Construct new 230kV transmission line from Garden Springs to a new switching station, Bluebird, at an interconnection point on the BPA Bell – Coulee #5 230kV transmission line.	Construction		X	x
134	Craig Road Interconnection	Customer Requested	Customer will construct <u>new</u> distribution station. Avista will provide <u>new</u> radial 115kV transmission line from Airway Heights Station as part of the Melville Station project.	Budgeted		х	х
			Project updates the existing Boulder-Ivin #1				

Planning Criteria

Applicable Facility Ratings Shall Not be Exceeded

- NERC (North American Electric Reliability Corporation) TPL-001-5
 - Thermal and voltage ratings apply
 - Planning does not use emergency ratings
- WECC Voltage & Frequency Dip Criteria
 - WECC (Western Electricity Coordinating Council) TPL-001-WECC-CRT-4
- TP-SPP-01 Transmission System Performance

Planning Criteria

P0 - No ContingencyNoneN/A $< 80\%$ Continuous Rating ⁶ $0.95 < Avista 115kV < 1.052^7$ $1.01 < Avista 230kV < 1.052^8$ $0.99 < 500kV < 1.11^9$ $0.95 < All Other < 1.05^{10}$ N/A	
Loss of one of the following:	
P1 - Single 0.95 < Avista 115kV < 1.052 0.95 < Avista 230kV < 1.052 ¹² No BES generator shall lose	
Contingency Normal System 2. Transmission Circuit 3Φ 0.99 < 500kV < 1.11 Same requirements as P2-P7 ¹⁵	
3. Transformer 0.95 < All Other < 1.05	
4. Shuht Device stations) ¹³	-
1. Opening of a line section w/o a fault N/A	
2. Bus Section Fault SLG	
P2 - Single Contingency 3. Internal Breaker Fault (non-Bus-tie Breaker) SLG Positive damping within 30 seconds	
4. Internal Breaker Fault (Bus-tie Breaker) SLG	
Loss of one of the following: Rating ¹¹	Γ
P3 - Multiple Loss of generator unit 1. Generator	
Contingency (no System 2. Transmission Circuit 30 0.95 < Avista 115KV < 1.052 0.95 < Avista 230kV < 1.052	
aujustnents) 3. Transformer 0.99 < 500kV < 1.11	iny.
4. Shuft Device 0.95 < All Other < 1.05	- H
P4 - Multiple P4 - Multiple following:	
(Fault plus Normal System 1. Generator SLG	
stuck breaker)	
J. Transformer	
5. Bus Section	

Transmission System Analyses

- Steady State Contingency Analysis
- Spare Equipment Analysis
- Short Circuit Analysis
- Stability Contingency Analysis
- Voltage Stability Analysis

Distribution Planning

Assumptions, Modeling, Criteria, Analyses

Erik Lee | Principal Engineer System Planning

Assessment Overview

System Conditions / Assumptions

- Facility Model Set to Normal/As-Built Switching State
- Load Forecast: 10 years Using 3 Years Historical Data
- Load Model: 1 in 10 Year Min/Max Temperature Frequency of Occurrence (FO) by Subregion
 - Heavy Summer: Peak Annual Hourly Temperature
 - Heavy Winter: Minimum Annual Hourly Temperature
 - Temperature Curves Adjusted to Regional FO Values (for Summer & Winter)
 - 576 Load Models Driven by Temperature Curves
- Approved Projects are Modeled at Expected Energization Year
 - 10 Year Model

Location	Heavy Summer 1 in 10	Heavy Winter 1 in 10	Data Start
Colville	104F	-18F	2001
Spokane	104F (106F)	-17F (-5F)	1972
Sandpoint	102F	-9F	2004
Pullman/Moscow	101F (103F)	-18F (-14F)	1972
Othello	108F (110F)	-15F (-13F)	1950
Lewiston	108F (110F)	-10F (-2F)	1950
Silver Valley	102F	-14F (-13F)	1950

Temperature value in parentheses is derived using the past 25 years of temperature data

Weather Frequency of Occurrence

- Used NOAA Regional Data
- Identify Peak & Min Temps by Year
- Calculate Number of Years Above/Below Given Temp Value (-50F to 130F) & Express as Percentage of Years Over the Dataset

Weather Adjusted Seasonal Peaks & 576 Models

- Use Frequency of Occurrence Peak/Min Adjusted Annual Regional Weather Curves
- Month/Hour/Day Type Linear Regression Models (576)
 - 12 Month x 24 Hours x2 (Weekday/Weekend)

4-5PM July Actuals, Regression, & +/- 1 Standard Deviation Lines

X Axis: Hour of Day (1-24)

Purple Dots: Actual Measurements | Red Bars: Modeled Hourly Loads Top Bars: Facility Limit Rating

Distribution Load Forecast

- Feeder & Substation Transformer Level
- Typically Use 3 Years of Historical Hourly Average Load Data
- Anomalies Filtered Out (Top Figure)
- Multiple Linear Regression Approach (Bottom Figure)
 - Time Elements (Year, Hour of Day, Day of Week, Month, etc.)
 - Weather as Heating Degree Days & Cooling Degree Days
 - Light-Hours
- Permanent Load Transfers Require Feeder/Station/Region Data Aggregation
 - Proportion Back To Individual Elements

Calendar Time (3 years)

Full Model Development

- Synergi Electric
 - Copy of Weekly Model Build

Generation

- Small Generation (Rooftop PV, Wind) Included in Model
- Large Distribution-Connected Generators
- Potential Generation projects in Avista's Interconnection Queue
- Known Developments (Block Load Additions)
- IO Year Forecasted Loads
 - Using Summer & Winter 1 in 10 Peaks
- Budgeted & In-Construction Projects
 - Manually Edited In

Barker Rd 115kV / 13kV Substation (Synergi Electric)

Distribution Planning

Performance Criteria

Category ²	Outage ³	Thermal Performance	Voltage Performance ⁴	Regulator Performance	Current Imbalance	Voltage Imbalanc e	Customers Experiencing Interruption ⁵	Customers Experiencing Sustained Outage Longer than 2 Hours ⁶	Notes
D0 - No Contingency	None	< 80% Continuous ⁷	118V < Volt < 127V	-12 < tap < +12	Line loading > 90%: 5% Line loading > 80%: 10% Line loading >70%: 15% Line loading < 70%: 20%	3%	N/A	N/A	 Seasonal load transfers can be used
	Loss of one of the following:								 Field switching can be used to restore
D1 - Feeder	1. Feeder Lockout	< 95%	114V ⁸ < Volt < 127V	Line loading > 90%: -15 < tap < +15 Line loading < 90%: NA	Line loading > 90%: 10%	5%	3000 or 10MVA	Suburban: 500 Rural: 3000	customers Generator curtailment may be
	2. Generator Outage/Off	Continuous	< 4V Deviation [®]			0	0	required for restoration	
	3. Automatic Transfer Switch Operation						N/A	N/A	
D2 – Multiple Contingency (Common Structure ¹⁰)	Loss of one of the following: 1. Loss of two feeders on common structure 2. Loss of three feeders on common structure	< 95% Continuous	114V< Volt < 127V		None	5%	4000	500	
D3 -	Loss of one of the following:								 Feeder breaker and/or regulator
Substation	1. Feeder Regulator	< 95%	114V ~ Volt ~ 127V	15 < tap < +15	None	5%	3000	0	bypass is acceptable
Contingency	2. Feeder Breaker	Continuous	11445 400 5 127 4	-10 - 10 - 10	None	070	3000	0	
	5. Substation Transformer						6000	Suburban: 0 Rural: 1500	

Distribution System Analyses

Capacity (Multiyear Load Flow)

Feeder | Substation Transformer | 10 Year Planning Horizon

Phase Current Imbalance

Where we have data

Auto-Transfer Analysis

Ensure ATS failover capacity capability

Contingency Analysis Development in 2025

evelopment in 2025

Short-Circuit Analysis Re-evaluate in 2025

Thermal Performance Explanation

Thermal Performance

- Amps (Current) = Heat
- Heat = Degradation
- Heat = Sagging
- Heat = Material Failure
- Heat = Insulation Failure

X Axis: Time Aveva (OSISoft) PI Vision Dashboard

Current Avista Projects

Project Name	Driver	Status
Carlin Bay Substation	Performance & Capacity	Construction
Metro Station Rebuild	Asset Condition	Construction
Valley Station Rebuild	Performance & Capacity	Construction
Prairie Station Rebuild	Performance & Capacity	Construction
Bronx Station Rebuild	Performance & Capacity	Budgeted
Post Falls Station Rebuild	Customer Requested	Budgeted
Melville Station	Performance & Capacity	Budgeted
Bunker Hill Customer Capacity	Customer Requested	Budgeted
Pleasant View Capacity Mitigation	Performance & Capacity	Budgeted
Northeast Capacity Mitigation	Performance & Capacity	Budgeted
Glenrose Capacity Mitigation	Performance & Capacity	Budgeted
Orin Capacity Mitigation	Performance & Capacity	Budgeted
Moscow Capacity Mitigation	Performance & Capacity	Proposed
Lewiston Capacity Mitigation	Performance & Capacity	Proposed

Next Steps

- Develop an approach to using AEG's 2025 DER Potential Study results in the 2025 System Assessment
- Finalize Study Plan
- Perform analyses and identify system needs
- Topic suggestions email: DistributionPlanning@avistacorp.com

Avista's O'Gara 115kV / 13kV Substation, South of Harrison, ID

